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Abstract -. The amount of data collected by the SCADA of an urban water supply system is sometimes difficult to process. A 

multivariate statistical technique, Principal Component Analysis (PCA) is presented in this paper, which processes this data, 
simplifying and synthesizing the most significant information. This technique extracts new variables, principal components (PC), that 
explain the behaviour of injected flow. Multivariate control charts to detect outliers show higher sensitivity than those generated with 
traditional univariate statistical methods. 
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INTRODUCTION TO PRINCIPAL COMPONENT ANALYSIS (PCA) 

Frequently, the amount of data collected by the SCADA system (Supervisory Control And Data 
Acquisition) in a water utility exceeds the human analysis capacity, since it continuously records great 
quantity of data of different variables. In most cases, these variables are related to each other, i.e., they are 
not independent. Since classical univariate statistical methods only apply when variables are uncorrelated 
and,  in the studied case the water consumption measured during one hour is related to previous water 
demand, a multivariate technique should be used.  

 
From a statistical point of view and in a restrictive way, multivariate analysis can be defined as “a group 

of techniques whose objective is the descriptive analysis and/or to build inferences from multivariate data, 
that is to say, in which each observation is constituted by the values of several interrelated variables” 
(Romero,1997). For this reason, multivariate statistical techniques are very useful to analyse great quantities 
of data and convert it into usable information. Multivariate theoretical principles are known for long time and 
have been developed and used in large number of areas such as Sociology, Medicine, Biology or Hydraulic, 
as the case study. There is an extensive classification of the different multivariate analysis techniques 
depending on the data matrix studied and the aim of the analysis.  

 
In this paper, one of these multivariate methods, Principal Component Analysis (PCA), is used to study 

the injected night flows to a water distribution system. In this technique, variables constitute an 
homogeneous group and information is simplified into a new reduced number of variables, called latent 
variables or principal components (PC). These new variables, those which better explain the original data, 
are built as a linear combination of the original ones (Jackson, 1991). The correlation structure of the original 
variables is an essential aspect of this analysis, that uses the relationship between variables to achieve a deep, 
simple, and complete study of the observed data. 



AIM OF PRINCIPAL COMPONENT ANALYSIS (PCA) 

Principal Component Analysis (PCA) is a statistical technique that compresses a high-dimensional data 
matrix into a low-dimensional subspace, in which most of data variability is explained by a fewer number of 
latent variables. 

Commonly, original data are organized in a data matrix denoted by Z. Each object or observation,- is 
stored in a different row and is composed of  K variables-, that are placed in columns. Matrix dimension is 
defined by the number of observations, N, and the number of variables K. Hence, element xi,k –i,k matrix 
position- is ith measurement of the kth variable. Data matrix can be depictured as a data cloud of N points in a 
K-dimensional space (Figure 1). 

 
When the original data matrix is simplified some information is lost. Consequently it is important to find 

a new A-dimensional space, of principal components (PC), which is able to explain in the best possible 
manner the cloud of points of the original data. In this sense, PCA is a technique that allows to reduce the 
original K-dimensional space into a new A-dimensional subspace preserving the maximum information from 
the initial data. This new PC-space should point up dominant patterns and major trends in the data. It will 
also help to detect outliers, i.e. points with unusual behaviours. At the same time, PCA can be used to build a 
model describing how the system behaves and indicating most remarkable process variables. 

 
For illustration, a simple example is shown in Figure 1. The original data cloud is plotted in a two-

dimensional space. By means of the PCA technique, a one-dimensional space, which best describes the 
original data, is obtained. This direction is calculated so that the distance between the data points and their 
projections onto the one-dimensional space is minimised. 
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Figure  1 .Data  c loud projec ted into  a  l ine  by  PCA.  

METHODOLOGY 

The starting point in PCA, and in general in every multivariate analysis procedure, consists of finding an 
adequate data matrix and transform it into the best suitable form. This pre-processing is essential when 
building a mathematical model and can make the difference between a successful and an unsuccessful  
analysis. 

 
Firstly, it should be noted that multivariate projection methods, like PCA, are sensitive to different 

numerical ranges in the variables. A variable with a large numerical range automatically gets more 
significance than a variable with a small numerical range. For this reason, the most common pre-processing 
tool involve a two step procedure. In the first step, for every observation, the average value of each variable 
is subtracted. In the second step, all the data is divided by the standard deviation of the corresponding 
variable.  In this way, Z matrix is transformed into X matrix. 

 
PCA analysis starts after data pre-processing (Figure 2), calculating the eigenvector of the covariance 

matrix of pre-treated X, during model building. The computed vectors, called principal components, define a 



new A-dimensional space. The projection of the original objects onto these new principal directions 
generates new variables (latent variables or scores), linear combination of the original ones, that are 
uncorrelated and contain the most important information of the primitive K-variables. The new A-
dimensional space constitute the PCA-model. As said before, and because of the reduction in space 
dimensionality from K to A variables, some variability of the data is not “explained” by the model. The 
fraction of the data that the PCA-model is no able to “explain” is considered to be statistical noise. 
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                     F igure  2 .  PCA-model  bui lding  methodology.  

 
Thus, the original pretreated data matrix XN,K is decomposed by PCA as 
 

 X (N,K)= X `(N,K) - E(N,K) =T·PT + E(N,K)         (1) 
Where 
   
 X: Original pretreated data matrix. 
 X`: Estimated data matrix calculated by PCA. 
    E: Residual matrix. 

   P: Loading matrix 
    T: Score matrix.  
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Figure  3 .  Decompos i t ion  of  or ig inal  data  matr ix  X.  

 
As seen in equation 1, P and T, are matrices of lower dimension which capture the essential patterns and 

trends of the observations. The P matrix or loading vectors defines the directions of principal components 
which constitute the new PC-subspace. Matrix T or score matrix describes the orthogonal projection of the 
primitive data on the PC-space (Figure 3). Matrix E contains the residuals, i.e. the information that is not 
“explained” by the PCA-model (Wold et al., 1987). 

 
For finding those “lines and planes of closest fit to systems of points in space”, that is the principal 

components or directions, a mathematical algorithm called NIPALS is used (Wold,1966). 
 
Once the PC-space is defined, each observation can be decomposed into two other vectors (Figure 4). The 

first one is the orthogonal projection of the data point on the PC-space, t. The second one is the residual, i.e., 
the distance between the data point and its projection onto PC-space, e. As previously said, the later vector 
represents the amount of information that PCA-model is not able to reproduce. 
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Figure  4 .  Vector  decomposi t ion on the  new PC subspace .  

 
A common concern in PCA is how to find the optimal number of principal components. On the one hand, 

reducing in excess the space dimensionality may cause significant information loses. On the other hand, 
extracting too many principal components leads to an over fitting of the model losing its reliability and 
predictive capability. Therefore, it is essential to extract the correct number of principal components. Not too 
many, so data analysis is not significantly simplified, and not too few, in which system behaviour is not 
satisfactorily explained by the PCA-model. 

 
Malinowski (1977, 1987) proposed different tools for determining the PC-space dimension and diagnose 

the model quality. In general, it can be said that the extraction of new principal components stops when 
adding a new variable is not significant and the model does not explain in a better way the behaviour of the 
variables. In technical literature several parameters, such as R2, that measures the “goodness of fit” or Q2 that 
indicates the predictive capability of the model (Eriksson et al., 1999) are already presented. For example, 
Cross-validation (CV) procedure was first developed by Wold (1978), and is a practical and reliable method 
to test the significance of a PCA model.  

 
Up to this point, every observation stored in the data matrix has been used to build up the model. 

However, some of them, because of their different behaviour, may distort the directions of the principal 
components. For this reason, it is needed a model validation (Figure 5), that detects observations, called 
outliers, which may falsify the principal components space.  

 
Outliers can be classified, into severe or moderate, depending on their effect on the PC model. Each type 

is detected using different statistical parameters. 
 
- Severe outliers are those observations in the PC-space whose distance to the centre of gravity of the data 

cloud is considered to be too high. Severe outliers can orient towards themselves principal directions, those 
of maximum data variability, creating a fictitious component and misleading the real data (Figure 5a). 
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Figure  5 .  (a)  Severe  out l ier ,  (b)  Moderate  out l ier  



 
 
For example, as depicture in Figure 5a, the distance of encircled observations to the centre of gravity of 

the data cluster is high. These observations may deviate the direction of the principal components. In this 
case, due to the fictitious variability that they cause, a direction p*, which does not correctly reproduce data 
variability, is extracted. Severe outliers mislead the PCA model due to the great effect that they exert during 
model building. Model validation (Figure 2) attempts to remove from the data matrix these dangerous 
outliers and then, principal directions are recalculated. 

 
In practice, severe outliers are detected by the statistic T2 Hotelling (Jackson, 1991), defined as the 

Mahalanobis distance between the observation projection onto the principal space and the centre of gravity 
of the data cloud. T2 Hotelling, despite Euclidean distance, take into account the covariance matrix between 
variables (equation 2). 
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(2) 
   

 it : Scores o observation i projection along principal component. 
   tS : Covariance matrix. 

 
T2 Hotelling is distributed with F- Snedecor probability distribution with A, N-A degrees of freedom, 

denoting A as the number of principal components  and N the number of observations. Using this parameter 
it is possible to establish control limits that will identify severe outliers or observations which behave in an 
abnormal manner. 

 
Hence, when for a given observation i,  Ti

2 > A·(N2-1)/ N·(N-A)· F critical (p=0,05), such observation is out 
of PC control limits with 95% of confidence level. Modifying the confidence level of the PC control chart 
only requires to recalculate F critical for the appropriate probability value.  

 
- Moderate outliers are those whose Euclidean distance to model, or in other words the residual vector 

module ie , is too large (Figure 5b). The statistical parameter used to detect this type of outliers is the  
Distance to model (DMOD) defined by the ratio Si/So, where Si represents the absolute distance to model and 
So the normalized distance of the model. 

 
Therefore, absolute distance and normalized distance of the model are statistics that determine if an 

observation is too faraway from the model. In such case they will be classified as an outlier.  
 
Absolute distance to model is calculated by:   
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   where 

K : Number of primitive variables. 
A: Number of Principal Components. 



  eik: Observation i residual on variable K. 
The normalized distance of the model is an estimation of its residual variability taking into account all the 

observations used to build the model. It is calculated as follows: 
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  A0: 1 if model is centered, 0 otherwise. 

 
The absolute distance of one observation divided by the normalized distance to the model squared, 

(Si/So)2, approximate a F-Snedecor probability distribution with (K-A),(N-A-1)(K-A) degrees of freedom. 
This way, the membership probability of one observation can be computed. If (Si/So)2 > F critical, then 
observation i can be considered to be out of the control limits for that confidence level. Such observation is 
suspicious to be an outlier. 

 
Once all outliers are detected and removed from the data matrix, the methodology returns again to the 

model building step using the debugged data matrix. After several iterations, summarized in Figure 2, a 
reference PCA-model is calculated. 

CASE STUDY: INYECTED FLOW TO AN URBAN WATER UTILITY 

INTRODUCTION 
 
This paper exploits the PCA technique to determine hidden correlation structures present in the injected 

water flow data. This has been done by obtaining a PCA-model that condenses the valuable information 
contained in the data files stored by the SCADA system of the utility. 

 
As a normal procedure, water companies record all the data coming from the measurement equipment 

installed in the system. The engineer in charge of controlling network performance supervises the injected 
flows, specially the injected night flows. Most of the times, the control limits are manually established based 
on the practical experience of technicians, without using any statistical methods.  

 
Nowadays, the high complexity of water measurement networks, and the number of water district 

metering areas (DMA) makes this task complicated. Water pressure regulating valves are used to maintain 
water pressure in between some operational limits, so water may come from different pipes to a given sector. 
The relations between flow in different pipes change when the opening of these valves is modified. For this 
reason, it is difficult to handle such quantity of information and upholding coherently water flow control 
limits to indicate abnormal measures. 

 
To build a model, a stabilization of the process is required to obtain a valid reference behaviour. 

Afterwards, PCA model establishes T2 Hotelling and DMOD control limits for the measured flows. Flow 
data which fluctuate in between these limits are considered to respond to a normal behaviour, otherwise, they 
are considered to be outliers. PCA control charts are appropriate for situations, like in a water supply system, 
where the process measurements are multivariate and continuous, and where it is important to detect changes 
in the relationships between variables (Rodriguez and Tobias, 2001). Outlier detection in real-time is one of 
the most important aims of Multivariate Statistical  Process Control (MSPC) (Kourti and MacGregor, 1996). 

 
An important consideration in PCA, and in general in every statistical method, is that reference model 

should be reestimated with a given frequency depending on the network characteristics. Numerous changes 
in the network operating conditions will imply frequent updates in the PCA-model. 

 
Kurokawa and Bornia (2002a, 2002b) and Harris and Ironmorger (1998) propose new approaches, 

making use of univariate Statistical Process Control (SPC) to detect water leakage in a distribution network. 



Water losses are controlled by a classical univariate statistical analysis of the injected flows. Control limits 
for common water demands are also established. 

 
In contrast, this paper presents a multivariate SPC methodology to detect failures or unusual water 

demands in the water network. This methodology is more sensitive to abnormal behaviours, for example 
leaks, than other univariate statistical methods since it takes into account two parameters: variability and 
relationships between variables. 

PCA-MODEL BUILDING FOR NIGHT WATER FLOWS 
 
In this case study, as already mentioned, the water network SCADA system collects the injected night 

flows into a given sector of the network. Therefore, the starting point of this analysis consist of selecting the 
appropriate data and organising it correctly into the raw data matrix.  

 
First of all, to ensure certain homogeneity of the studied data, night flows correspond to a time period in 

which the operational conditions of the sector were quite homogeneous. During the time interval considered 
there were no great pressure or water demand changes due to seasonal effects or population increments. The 
data is organised in rows, corresponding each one to one day. For each day (observation), there are records 
about the injected water flow from 00:00 a.m. to 6 a.m., in one hour intervals arranged in the following data 
matrix: 
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where Qi,j means the injected water flow during hour j and day i. 

 
PCA-model building is carried out iteratively in several rounds, until a reference working condition for 

injected water flows is found. In such case, PCA-model is fitted. Consequently, in this section, the different 
stages carried out during the model building are briefly described. The statistical computations have been 
completed using SIMCA-P 9.0 software, although it may be done using a simple home made software. 

 
To begin the analysis, as discussed in the preceding sections, it is decisive to pre-treat the data matrix 

(Eriksson et al., 1999). Frequently, one of the major problems of this kind of analysis is the heterogeneous  
characteristics and the substantially different numerical ranges of the variables. Therefore, since PCA is a 
maximum variance method, a variable with a large variance, i.e. large numerical range, will have a better 
chance to be modelled as principal component than other variables with less variance. Hence, it is interesting 
to transform data into a more suitable form of analysis, considering in this case, autoscaling procedure -mean 
centered with each column and scaled to unit- variance - as the most common technique (equation 6). 
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where knQ ,  and kσ  are the average night water flow vector and standard deviation vector, respectively.  
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The next stage, after data matrix pre-treatment, consists of computing the principal components pa of the 

initial raw data matrix. Principal components are obtained by calculating the eigenvectors of the covariance 
pre-treated data matrix. Its eigenvalues λ1, λ2,…, λA are usually listed in decreasing other of importance, λ1 >λ2 

>…>λA , with respect to their ability to describe data variability. 
 
The first principal component is the direction that best explains the data cloud. In other words, the axis of 

maximum variation of the points whose projections onto this line minimize their distance to the data in a 
least squares sense. The second principal component is the line that passes through the data average points 
and minimizes the projection distances in a direction that is orthogonal to the first principal component. 

 
Principal components are computed until model adjustment to original data matrix is considered to be 

sufficient. However, the number of principal components has to be selected carefully. Sometimes, adding a 
new component to the PCA-model can lead to an over adjustment that deteriorates its predictive capacity. 
Knowing the number of principal component to include in the PCA-model is a critical stage, called model 
diagnosis.  

 
For the case studied, each observation, corresponding to the injected night flow, was made up of seven 

variables. The PCA technique reduced the dimensionality of the variable space from seven to two. Cross-
validation technique proved that adding a third principal component was not necessary. Therefore, the 
loading matrix P resulted a two column matrix, in which each column is constituted by the corresponding 
eigenvectors of the covariance matrix as shown in the following expression: 
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Once principal component are identified, it is possible to project the observations on the new two-

dimensional space creating the score matrix: 
 

T = XN,6 · P6,2       (9)
    

In this situation, first direction of the reference model points out the average night water flow, i.e., the 
loading vector in this direction has similar weight during all night. Then in practice, those days with high or 
low t1 are due to abnormal water demand, extremely high or low, and are seen in bidimensional score plot as 
typical outliers. In contrast, first two hours of the PCA model, 0:00 and 1:00 a.m, have more influence on the 
second direction than the rest. Consequently, changes in the water demand during these two hours will be 
rapidly denote. 

 
After the first PCA-model is built, the next step, following Figure 2, is model validation. This phase, 

essentially graphic, identifies those observations out of the control limits which are called outliers. To ensure 
that the obtained model is not distorted, these observations have to be eliminated from the original data 
matrix. This debugging process yields to a reference PCA-model, undistorted by outliers, which define the 
standard behaviour of water demand during night hours. The outlier detection is completed individually, 
computing the two statistics presented in this paper, DMOD and T2 Hotelling. 

 
Figure 6 shows the score plot of the two first PC extracted from the original data matrix and the DMOD 

plot. Observations which lay out of the T2 Hotelling control limit are considered severe outliers, while points 
out of DMOD control limit are define as moderate outliers. 

 
Both detection methods are complementary. T2 Hotelling reveals those samples with excessively high or 

low values of the variables recorded, even in those cases in which the correlation between variables is 
maintained. To understand this concept consider Figure 6a and 7. Observations 8, 9 and 163 conserve the 
same shape as the average during the monitored period, i.e. night hours, but water demand is higher. 
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Figure  6 .  Control  chart  (a )  T 2  Hote l l ing  (b)  DMOD .Conf idence  leve l  95%.  

R 2 (cum)=95.2% Q 2 (cum)=89.5% 

 
The other parameter used to diagnose the behaviour of an observation is DMOD. This statistic detects 

sensitively any change in the injected water flow patterns. In other words, it identifies those days where the 
variable correlation structure is broken. Observations, 64, 121 or 179, depictured in figure 6b and 7, are clear 
examples. These observations may be classify as both, severe and moderate outlier. The reason for this is 
that the value of the variables is either too high or too low when compared with the average explained by the 
first direction. Furthermore, in these particular cases, the correlation structure between variables is also 
broken. 

 
In Figure 7, all injected flow during the studied period are plotted. Those days with real incidences, with 

excessive water leakage (pipe bursts) or water service interruptions, effectively exceed the PCA control 
limits. 
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Figure  7 .  Night  water  demand pattern of  the  study per iod.  

 
An important conclusion extracted from this analysis is that moderate outliers are usually those in which 

the failure appears between 00:00 a.m. and 6 a.m. Instead, severe outliers, are those observations in which 
the abnormal water demand started before the studied time interval. 
 

As a result, the final T2 control chart, as display in Figure 8a, only include the observations used to build 
the reference PCA-model. All of them are inside the T2 Hotelling limits and scatter homogeneously in the 
entire ellipse area. This ellipsoid establishes the control limits in a low-dimensional space and defines the 
allowed variability of the studied process. In contrast, Figure 6a, shows the initial undebugged data cloud 
concentrated in the centre of the T2 chart region. In this case control limits are too large due to the presence 
of outliers in the PCA-model which increase variability. 

 



Nevertheless, in the debugged model it is possible to find some days slightly outside the DMOD control 
limits (Figure 8b). As a statistical fact, consequence of the 95% confidence level adopted in this case, 5 out 
of 100 observations may be outside the control limits without being a real moderate outlier. 
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Figure  8 .  Reference  PCA-model  control  charts . (a)  T 2  Hote l l ing (b)  DMOD.  Conf idence  leve l  95%.  

 MODEL EXPLOITATION 
 
The use of reference PCA-model in the SCADA system is simple. Information about injected water flows 

is recorded every hour. After the night period these data can be projected on the PCA-model using equation 
10.  With the calculated projection this observation can be plotted on the T2 control charts. Likewise, the 
Euclidean distance to the reference PCA-model can be obtained for this new observation and represented in 
the DMOD control chart. As describe above, both parameters, T2 Hotelling and DMOD, are used to evaluate 
separately each new water flow period to detect possible incidences.  
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Figure 9 and 10 depict a simple example that compares the average night water flow of those days 

included in the reference PCA-model against fictitious day with irregular water demands. 
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F igure  9 .  Day A with irregular  behaviour .  High populat ion water  demand .  

 
Figure 9 shows how T2 Hotelling control chart identifies day A, with a large water demand during night 

hours, as severe outlier. As seen in this figure, for day A the shape of water demand curve is similar to the 
average, i.e. it conserves the variable correlation despite the fact that there is a higher water consumption in 
this DMA. DMOD parameter is not useful for detecting this type of outliers, distance to model of this 
observation lays inside control limits.  

 
In contrast, as discussed in preceding sections, day B (Figure 10) presents a sudden change in the water 

demand curve. For this observation the correlation structure between variables is broken, and consequently 
DMOD for this point is large and out of the defined control limits. T2 Hotelling control chart does not 
identify this observation as an outlier. 
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Figure  10 .  Day B with  irregular  behaviour .  Sudden water  p ipe  burst  that  produces  broken water  

demand curve .  

Another type of control chart, shown in Figure 11, is constructed as a time series of the projected 
observations along the first principal component, t1. This chart allows to rapidly identify severe outliers and 
injected flow tendencies during the entire monitored period. On the one hand, pipe bursts will produce an 
abnormal high value of t1.  On the other, a communication failure between the flowmeter and the control 
centre will yield an unusual low value of t1. Finally, a positive tendency means that leaks in the system are 
frequent and significantly increase water demand. A steep slope indicates that pipe urgently need to be 
replaced or rehabilitated. 
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Figure  11 .  Time-ser ies  of  projec ted observat ions  a long  the  f irs t  pr inc ipal  component .   

Conf idence  leve l  90  and 95%.  

PCA - TECHNIQUE BENEFITS AND CONCLUSIONS 

The basis of the methodology presented in this paper is founded in the geometry of the original data 
cloud, that in this case correspond to the injected water flows during night hours. The PCA-model calculated 
establishes statistical control limits for T2 Hotelling and DMOD, which allow to identify irregular behaviours 
of the system. 

 
The sensitivity of this technique is significantly higher than other univariate statistical methods. The 

reason is that a univariate approach only takes into account the variability of one variable at a time. In this 
case, it would mean to solely consider the variability of water consumption during one hour, for example 
between 5 and 6 a.m. A multivariate method will also consider the relationships between variables, i.e. the 
correlation structure of night flow water demands. This way, if water consumption during one hour is higher 
or lower than expected, taking into account measured water demand during previous hours, the multivariate 
method would detect this irregular behaviour. 

 
Another important benefit, with respect to traditional approaches, is the fact that this statistical procedure 

is appropriate when process measurements are continuous. Thus, the reaction time of the operator improves 



and therefore the economical costs due to water incidences. It is possible to implement different models for 
several time intervals during the day.  

 
Finally, it is important to mention that this multivariate technique was designed to reduce data 

complexity. It extracts the most significant information from the numerous initial variables and describes it 
in a few new variables, converting it into useful and simplified information for the system operators.  

 
Like in any statistical model, PCA-model should be updated periodically to preserve its effectiveness. 

The update frequency depends on the quantity of changes in the network configuration, the variation in water 
demands due to seasonal effects or increments in the DMA-water customers, and other local parameters. 

 
As a final conclusion it can be said that multivariate statistical control procedures, and particularly, 

Principal component analysis, are techniques not frequently used in this field despite their usefulness. PCA 
contributes very positively in water supply management and can improve operational network conditions 
since it allows a more rapid and sensitive detection of any incidence produced in the water distribution 
system. 
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